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1 Research Objectives

Complexity theory -is the study of resource-bounded computation. The aim of this
project is to study the-amount of resources, in particular, time and hardware, used
in neural network computations. Research will focus on four major topics:

1. The relative computing power of various neural network models.

2. Algorithms for neural network computations; upper-bounds, lower-bounds
and completeness properties.

3. Fault-tolerant computation.

4. Learning.

2 Accomplishments

The Investigators have made significant progress in laying a foundation for a com-
plexity theory of neural networks. The complexity class TC° has been identified
as the prime class of interest for neural network computation. It consists-of the
problems which can be solved by small, fast neural networks, that is, those whose
size grows only polynomially with the number of inputs, and with a fixed number
of layers. The complexity class remains the same under many different neural net-
work models, for example, even if probabilistic ([19]), multi-valued ([15]), or analog
neurons are allowed. Progress has also been made with problems related to learning
and fault tolerance. More details follow.

2.1 Foundations

The article by Parberry [18] has laid the groundwork for the study of the complex-
ity of neural networks. In this paper, a case is made for the importance of the
complexity theory of neural networks by comparing and contrasting it with conven-
tional sequential, parallel and probabilistic complexity theory, and collect together
much of the knowledge which can be fairly easily deduced from standard results in
complexity theory. This will form the background against which our research will
be l)resented. The key resources of time. size, (number of-neurons) and weight (total
weight of all connections) are identified. The latter two resources give some indica-
tion of the amount of hardware that will be needed to implemcnt neural networks.
The links between neural network based complexity classes and the standard classes
are explored. There is no significant difference between the two until running time
is reduced to a constant and hardware to a )olynomial. In this case (for example,
the class TCO of languages which can be recognized in polynomial hardware and
constant depth) little is known.



Parberry [18] also contains a few previously unpublished results, most notably
the following.

1. The weights of a neural network can be made ±1 by increasing the size-from
z to z4 log3 z and the depth by a constant multiple. This is a smaller increase
in size than previously obtained in Parberry and- Schnitger [19].

2. Any function Which can be computed by a conventional' circuit of size z and
depth d can be computed by a neural network of depth d/E log-log z and size
O(zi+C), for any e > 0. This means that polynomial size neural networks are
faster than conventional bounded fan-in circuits -by a factor of log log n. The
exponent in our result is smaller than the one previously known.

3. The NP-completeness of some problems related to the termination of cyclic
neural networks has been strengthened to some restricted cases, including
bounded degree, and the property that if there is a terminating computation
then there- is at least one which does so in polynomial time.

2.2 Pebbling

One of the advantages that neural networks have over conventional circuits is un-
bounded fan-in. There is a well-known relationship between size of a conventional
circuit and depth of an unbounded fan-in circuit: any function computed in size z
by the former can be computed in depth O(z/ log z) (and possibly size exponential
in z) by the latter. Kalyanasundarain and Schnitger [il] have improved this result
by reducing size substantially.

2.3 Boltzmann Machines

We have formulated and developed Ehe chesis that the class TC' is fundamental to
neural network computations, in- that it characterizes the languages recognizable by
small, fast neural networks. In Parberry and Schnitger [19], we showed that this
is even true for probabilistic models (such as the Boltzmann machine) of polyno-
inial weight. Our efforts in this direction have led to an interest in TC0 by many
l)rominent complexity theorists.

2.4 Computing with Noisy Neurons

We consider the scenario in which each neuron has a small probability of failing,
and we wish to construct a network which reliably computes the correct result with
probability of some fixed constant greater than one half. The reliable simulation of
fault-free conventional circuits by a faulty neural network with a. log-linear increase
in size and constant, multiple increase in depth is described in Parberry [18]. This
can be extended to neural networks with a small fixed fan-in [6]. However, the more

I We use the term conventional circuit-to describe a circuit constructed from two-input NAND
gates.
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desirable fault-tolerant simulation of a fault-free neural network appears difficult.
There is evidence from VLSI and from natural neural systems that it is architec-
turally advantageous to physically separate the summation from the thresholding in
the neuron. In-[6] we propose such a-model, called the summation network. It is not
too different from the standard model, in the sense that each can simulate the other
in a fault-free environment with onlY a polynomial increase in size and a constant
multiple increase in -depth (thus polynomial hardware, constant depth summation
circuits also recognize TC°). Nonetheless, summation networks are much easier to
analyze in the presence of faults. We were able to obtain a reliable simulation of
a fault-free summation network by--a faulty summation network with a log-linear
increase in size and constant multiple increase in depth.

2.5 Complexity of Approximation

It is often hoped that neural networks will be useful in solving NP-complete prob-
lems. It is apparent from [18] that no polynomial size neural network can ever
solve such a problem exactly. and that it is easy to find an exponential size network
which does. A much more reasonable aim would be to use neural networks to give
approximate solutions, that is, solutions which are sufficiently close to the optimum.

U11fortimately -there is not yet- availrble a- well-develope- theory of -approximation
algorithms. Berman and Schnitger [91 have contributed to :the foundations of such
a theory by investigating "approximation complete" problems. Strong evidence- is
provided indicating that Constraint Satisfaction problemb of quite simple structure
can not be approximated satisfactorily inl polynomial time. Any such problem- would
be as difficult to approximate by a neural network as by a conventional computation
(5j.

2.6 Communication Complexity

If neural networks are to be implemented in VLSI, it is likely th;.t efficient methods
of solving problems in Numerical Linear Algebra are needed. The communication
complexity of a function .f measures the conmmunication capacity any system com-
puting f must provide. In the design of VLSI systems, where savings on the chip
area and computation time are desired, this complexity dictates an area x ime2

lower bound. Chu and Schnitger [10] investigate the conmmnication-complcxit. of
determining whether a given square matrix Alf is singular. We show that. for i x n
matrices of k-bit integers, the communication comple:ity of this problem is O(kni ).

In case the entries of 31 are elemcnts of a. finite field of size p, we also -prove the
communication complexity of this problemn to bc O(n 2 log p). Our results imply
tight bounds for a wide variety of other problems in Numerical Linear Algebra.
Among those problems are determining the rank and computing the determinant
of a matrix, as well as the computation of several-matrix decomposicions. Another
important corollary concerns the solvability of linear systems. In this problem it
has to be decided whether a linear system Ax = b has a solution.. When A is an
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n x n matrix of k-bit integers and b a vector of n k-bit integers, we determine its
communication complexity to be O(kn 2).

2.7 Learning from Tests and Counter-examples

Itis hoped that neural networks will be more appropriate for learning than conven-
tional computer models. The theory of learning has recently been the subject of
much interest following the seminal contributions of Valiant.

Berman-and Roos [8] have extended the work of Angluin on learning finite-state
languages to show that deterministic one-counter languages (a large subset of the
context-free languages) can be learned in polynomial time. In this model of learning
the student (i.e. the learning algorithm) can test whether a chosen word belongs the
the given language. After a sequence of such tests the student constructs a machine
consistent with all tests and examples collected so far, and uses the constructed
machine to predict the membership of the future examples. After an incorrect
prediction the student constructs another machine with the aid of -additional tests.
This cycle may repeat a number of times, but the number of wrong predictions (i.e.
the number of counter-examples) and the total:time used for internal computations
and tests is bounded by a polynomial in the number of states of the machine which
recognizes the given language.

While the -algorithm of Angluin always returns the minimal machine consistent
with the data. the algorithm of Berman and Roos merely constructs an equiva-
lent machine vith size which is polynomially related to the minimal one. This is
unavoidable, given the current state of knowledge: while deterministic finite au-
tomata can be efficiently minimized, no feasible minimization procedure is known
for one-counter languages.

2.8 Multi-valued Neurons

Much experimental neural network research involves analog neurons, which input
real values, and- output real values. However, whilst the theory of analog neural
networks developed to date uses real numbers, experimental work is typically per-
formed on digital computers. Surprisingly, the simulations bear out-the theory. even
though the former is inherently discrete. and the latter inherently analog. Thus it
appears that neural networks are robust in terms of precision. This is a particularly
important trait, since it is impossible to fabricate analog hardware which has arbi-
trarily high precision. In particular, biological systems perform well with wetware
which has analog behavior. but only limited precision.

The Principal Investigator. Ian Parberry, (in cooperation with his Ph.D. student
Zoran Obradovic) undertook to investigate analog neural networks with limited
precision. In digital simulations, the activation levels of the neurons are limited
to some fixed number of values. k. which depends on the particular computer in
use. The computational and learning complexity of limited precision analog neural
networks was investigated. with a. particular emphabis on how the number of neurons
aind running time scale with k. as well as the size of the problem being solved.
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The key to the research was the demonstration-in [15] (also submitted to Journal
of Computer -and System Sciences) that limited precision analog neural networks
with k activation levels are equivalent to discrete neural networks with k levels of
activation, and k - 1 thresholds, as opposed to the traditional single one. The
computational complexity of these k-ar" neural networks was studied in [15], and
the learning complexity -in [16,17].

The work in [15] extends the traditional binary discrete neural network com-
plexity theory (see [18])zto the new multi-level discrete case. The reader is referred
to the journal papers for details. One typical result is that unlike the binary and
ternary case, the threshold values for the k-ary case where k > 3 cannot be fixed.
For example, in the binary case, the threshold can be made 0. In the ternary case,
the- two thresholds -can be made 0--and 1. In the general case, no fixed thresholds
will suffice. If k is restricted -to grow only polynomially with the size of the problem
being solved, then polynomial size, constant depth k-ary neural networks compute
only functions from TC °. the-classical complexity class for binary-neural networks.
This implies that-the superiority of-analog neural networks over discrete binary ones
can only confer a polynomial in size and a constant multiple in depth. However,
that. polynomial may still be significant.

The work in [16.17] extends the learning algorithms for the binary discrete neu-
ron to the k-ary case. Efficient versions of the Perceptron Learning Algorithm and
Littlcstone's Winnow Algorithm are given, proved correct. and analyzed.

2.9 Lower Bounds for Depth 3

Ian Parberry and his student Peiyuan Yan have made some progress on lower-
bounds. Whilst- it is extremely difficult to obtain exponential size lower-bounds on
the size required by constant dcpth neural networks to compute certain functions.
we have made some progrcss by restricting the power of the neurons. Ve [211
consider depth 2 circuits of mod - p and mod - q gates augmented with the limited
use of AND and OR gates with small fan-in. We are able to show an exponential
size lower-bound for certain depth-3 circuits of these gates for computing Boolean
conjunctions.

2.10 Computing with Analog Neurons

In [20] Georg Schnitger (in cooperation with Wolfgang Maass of the University of
Illinois and Eduardo Sontag of Rutgers University) examined the computing power
of feedforward networks with siginoid (i.e. smooth) threshold gates for computing
boolean functions.

A threshold gate with inputs 1:1 .... x,,, weights w1 .. .. i,, and threshold t
outputs the real number ( wX,). Popular choices for the gate function -j
include the binary threshold fuinction (i.e. y(y) = 1 if y > 0 and y(y) = 0 if y < 0)
and smooth threshold finctions (i.e -1 is differentiable).

We demonstrate. for a large class of smooth gate functions , (including the
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1
standard sigmoid a(x) = ) that their corresponding feedforward nets

1 + exp(-x)
are computationally at least as efficient as feedforward nets composed of binary
threshold gates. Moreover, we exhibit a problem (namely to decide whether exactly
one of two n-bit strings has a majority of ones) that can be solved with one hidden
layer and 5 smooth gates, but the same problem cannot be solved with one hidden
layer and constantly many binary threshold gates.

This raises the question whether smooth threshold gates give rise to dramatically
increased comluting power compared with binary threshold gates. Under quite
liberal assumptions (which are satisfied by the standard sigmoid) we show that
a feedforward net with n binary inputs, s smooth gates and d hidden layers can
be simulated within the same number of layers by a feedforward net composed of
O(poly(n + s)) -binary threshold gates.

Thus, disregarding a polynomial increase in size, smooth threshold functions
and binary threshold functions are computationally equivalent. If we don't disre-
gard polynomial increases, smooth threshold functions are computationally at least
as powerful as binary thi.'shold functions and provably more powerful for certain
problems.

2.11 Fault Tolerance

With his studet, Mir-ana Obradovic (who was supported by this grant) Piotr
Berman was working on optimizing threshold gates; i.e. on minimizing the sum
of the weights (assuming integer weights). When the weights are allowed to be
large integers. then merely testing the equivalence of two gates is a co-NP complete
problem. hence optinization canmnot be feasible. However, when the sum of the
weights of even one of the gates invoivel in the equivnalence test is polynomial,
then an equivalence te,±i can in polynomial time return the confirmation of the
equivalence or a countcrexample. WVe have developed a heuristic which uses this
equivalence rest as follows. It maintains a set of examples for the given threshold
gate. a set of proven inequalities of the form: this input should have the value
of the target function at least as high as that input, and a small set of assumed
inequalities. The goal is to construct a linearly ordered list of combinations of input
variables, such that the minimal weight of of each input is equal to its rank in the
list. This work is currently continued with two graduate students, Nicol So and
Ching-hoi Sze.

While this work is still in preparation. the partial results happened to have very
interesting applicatiols in the area. of management of replicated daia bases [13,14].
Here -the subject is a data base in which data items are replicated and distributed
between some number of sites. which may improve the reliability (a failure of several
data sites does not render a piece of date unreachable) and access (local rather than
remote reads). A static schece allows to perform a data base transaction dependent
on the set of processors which can at a particular instance of time communicate with
the originator of the transaction. In a voting scheme the sets of processors allowed
to execute are characterizcd by a distribution of votes and a quorum threshold. We
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have characterized several important classes of systems in which voting schemes
provide the optimal -static scheme. Moreover, we introduced efficient and practical
algorithms to compute the optimal distribution of votes. A part of our technique is
an efficient test for the equivalence of threshold gates.

With his former student, Juan A. Garay (now at IBM T.J. Watson Research
Center) Berman continued investigations on the Distributed Consensus problem.
In this problem- a group of processors has the task of reaching a common decision.
Each processor has its initial option (typically, a 0/1 value) and tle common de-
cision must be consistent with the initial option of one of the processors. There
are two complications which make this problem non-trivial: the communication is
conducted via bilateral links (so no 'public' vote is possible) and some of the pro-
cessors are faulty. No assumptions whatsoever are placed on the behavior of the
faulty precessors, e.g. they could be controlled by an omniscient adversary.

The goal of our research was to-provide solutions with better quality parameters

than the previous ones. The parameters which we study are the following: tile
resiliency, i.e. the tolerated number of faulty processors, the number of commu-
nication rounds and the amount of communication. So far, we do not know any
solution which would be superior simultaneously in all these aspects. We found a
solution which uses 1 bit messages, and has asymptotically optimal resiliency (3/4
of the optimum) and number of rounds (2 times optimum). In collaboration with
K.J. Perry of IBM Vatson we found a solution which has optimal resiliency, while
the message size is limited to 2 bits and-thc number of exchange rounds is 3 times
larger than the optimal one. In both cases we can substantially reduce the number
of rounds bv increasing message size to a higher constant (this is quite important
in practice. since the cost of sending one-page message and one-bit message is usu-
ally the same). Both protocols have the form of a simple sequence of votes, in the
second protocol there is a possibility of casting an undecided vote (hence 2 bits in
a message, rather then 1). These results and their applications are the subject of
[3.4].

Another group of results concerned protocols with optimal (rather than near
optimal) number of rounds and relatively small (so-called polynomial) message size.
One of these results was presented at FOCS and is the subject of the paper invited
to a Special Issue of the journal Mathematical Systcm.s Theory [2]. Another is the
subject of [1]. While these results are also based on voting. the votes are nested
recursively, which could easily lead to huge message size The techniques developed
by Berman and Garay allow a processor to avoid participation in most of possible
votes, hereby reducing the message size. In particular, a set of rules was found
which allow to identify quickly the faulty processors that "harm:" the computation
and to deduce the outcomes of avoidable votes.

The experience gained in the work on Distributed Agreement allowed us to
obtain some interesting results on fault diagnosis for muhiltrocessor distributed
systems (in cooperation with Andrzej Pelc of the University of Quebec [7]). In the
fault diagnosis model we assume that the faulty processors compute unreliably, and
can alter the content, of transmitted messages, however they can be detected by
their network neighbors with some probability; moreover faulty processors form a
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random subset of the system. The previous diagnosis technique was based on a
simple threshold: -the processors are diagnosed to be faulty based- on the number of
"failed tests" (a good processor may fail a test, if the-latter is "administered" by a
faulty one). We have shown that the quality of diagnosis improves substantially if
we form a graph of processors, and solve a maximum independent set problem for
this graph (an arc is introduced between two processors whenever one of them claims
that the other has failed its test). While the maximum independent set problem is
in general not feasible, we have shown that it suffices to form a-collection of very
small graphs, and tackle them separatedly. Moreover, we have exhibited a scheme
which allows to distribute the test result reliably through the system even with
a very small number of connections (if we have n processors, then the number of

links and tests is of the order n log n, we have proven that this order of growth is
sufficient and necessary).

3 Personnel

Dr. I. Parberry served as Principal Investigator from the inception of this grant
until his resignation from Penn State University on June 30, 1990. Dr. Schnitger
was Co-PI up to that date. and from then on took over as Principal Investigator.
Dr. Piotr Berman was Co-Principal Investigator for the entire grant period.

Research Assistants at various times during the grant period include the follow-
ing:
Balasubramanian Kalyanasundarai. Ph. D. granted 1988. Ph. D. thesis titled

'Lower Bounds on Communication, Space and Time".
Pei Yuan Yan. Ph. D. granted June 1989. Ph. D. thesis titled "Lower Bound

Techniques in Some Parallel Models of Computation".
Mirjana Obradovic. Ph. D. granted May 1991. Ph. D. thesis titled "Management

of Replicated Data in Distributed Svstenis".
Zoran Obradovic. Ph. D. -granted February 1991. Ph. D. thesis titled "Discrete

Multi-Valued Neural Networks'
Toshihiro Fujito. Ph. D. candidate in Computer Science.
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